Bandit-Based Solar Panel Control

نویسندگان

  • David Abel
  • Edward C. Williams
  • Stephen Brawner
  • Emily Reif
  • Michael L. Littman
چکیده

Solar panels sustainably harvest energy from the sun. To improve performance, panels are often equipped with a tracking mechanism that computes the sun’s position in the sky throughout the day. Based on the tracker’s estimate of the sun’s location, a controller orients the panel to minimize the angle of incidence between solar radiant energy and the photovoltaic cells on the surface of the panel, increasing total energy harvested. Prior work has developed efficient tracking algorithms that accurately compute the sun’s location to facilitate solar tracking and control. However, always pointing a panel directly at the sun does not account for diffuse irradiance in the sky, reflected irradiance from the ground and surrounding surfaces, power required to reorient the panel, shading effects from neighboring panels and foliage, or changing weather conditions (such as clouds), all of which are contributing factors to the total energy harvested by a fleet of solar panels. In this work, we show that a bandit-based approach can increase the total energy harvested by solar panels by learning to dynamically account for such other factors. Our contribution is threefold: (1) the development of a test bed based on typical solar and irradiance models for experimenting with solar panel control using a variety of learning methods, (2) simulated validation that bandit algorithms can effectively learn to control solar panels, and (3) the design and construction of an intelligent solar panel prototype that learns to angle itself using bandit algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matlab simulation of solar panel MSX-64 at the best locations of Kermanshah province using GIS interpolation

Considering that the effective yield of a panel is equal to its total number of hours of solar radiation and temperature, only the effects of temperature and solar radiation intensity at the maximum power point (MPP) are investigated in this article. By collecting temperature data, sun's radiation hours from six synoptic meteorological stations in Kermanshah Province over the course of an e...

متن کامل

Matlab simulation of solar panel MSX-64 at the best locations of Kermanshah province using GIS interpolation

Considering that the effective yield of a panel is equal to its total number of hours of solar radiation and temperature, only the effects of temperature and solar radiation intensity at the maximum power point (MPP) are investigated in this article. By collecting temperature data, sun's radiation hours from six synoptic meteorological stations in Kermanshah Province over the course of an e...

متن کامل

Improving Solar Panel Efficiency Using Reinforcement Learning

Solar panels sustainably harvest energy from the sun. To improve performance, panels are often equipped with a tracking mechanism that computes the sun’s position in the sky throughout the day. Based on the tracker’s estimate of the sun’s location, a controller orients the panel to minimize the angle of incidence between solar radiant energy and the photovoltaic cells on the surface of the pane...

متن کامل

Ac 2009-564: a Greenlite System: an Efficient Solar Energy Solution Using a Sun Tracker Panel and a Light Harvesting Control Panel

Reducing high energy consumption and costs is imperative and significant to our daily life. In this paper, we describe a capstone senior design project that develops an efficient energy-saving solution. The solution is called the GreenLite system and consists of two components: a selfadjustable solar tracker panel and a light harvesting control panel. The solar tracker panel tends to maximize t...

متن کامل

Physical Modeling of a Hybrid Wind Turbine-solar Panel System Using Simscape Language (RESEARCH NOTE)

Being sustainable and producing little waste products, the renewable energy knows a rapid deployment. Unfortunately, the intermittent characteristic of these energies makes them difficult to control. The influence of this aleatory character can be reduced with the coupling of two or more sources of renewable energy and secondly with a sound management of storage systems. This new configuration ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017